
Application Note IATAPP-106 Updated 6/1/2005

Fixed-Point Arithmetic in Impulse C, 1

Overview
This document describes the current level of support for fixed-point arithmetic in Impulse
C and provides examples of how to implement fixed-point arithmetic using Impulse C
datatypes and operations.

What is Fixed-Point?
Fixed-point arithmetic is a method of representing and calculating real numbers using
integer datatypes and hardware. Fixed-point is an alternative to floating-point, a more
well-known method of representing real numbers. Floating-point offers a greater range of
values and more precision, but is also significantly more expensive (in terms of
computation time and hardware required) than integer or fixed-point math. Embedded
systems and digital signal processing (DSP) designers often choose fixed-point in order
to achieve greater speed and reduce hardware cost in their designs.

There is, as yet, no commonly-accepted standard for representing fixed-point numbers.
The SystemC and Embedded C standards both define fixed-point types and operations,
but it is still up to the programmer to determine the parameters of computations,
including precision, rounding and saturation, on an application-by-application basis.
Floating-point, on the other hand, is codified in IEEE Standard 754, which defines the
binary representation of single- and double-precision floating-point datatypes, as well as
behavior of arithmetic operations across the entire range of representable values.

Fixed-point representations generally divide a fixed-width bit field into three parts: sign
(S), integer (I), and fraction (F). This document uses the following notation to denote a
fixed-point format: SsI.F. For example, a fixed-point number with 1 sign bit, 8 integer
bits, and 23 fractional bits is a 1s8.23 number:

Application Note

Fixed-Point Arithmetic in
Impulse C
Ralph Bodenner, Senior Applications Engineer
Impulse Accelerated Technologies, Inc.

Copyright © 2005 Impulse Accelerated Technologies, Inc.

Application Note IATAPP-106 Updated 6/1/2005

Fixed-Point Arithmetic in Impulse C, 2

Figure 1: Layout of a 1s8.23 fixed-point number

The value of a signed fixed-point number is usually given by interpreting the bit field as a
two’s-complement binary number with a decimal point between I and F. The precision of
a fixed-point number, or the granularity to which it is accurate, is equal to 2-F.

The sizes of the bit field and of the integer and fractional parts are application-dependent,
which helps explain the lack of a standard fixed-point representation. Designers must
juggle these three parameters and come up with an appropriate combination, one that
that meets each variable’s requirements for datapath size, numerical range, and
precision. The choice of whether a given fixed-point number is signed or unsigned is
also left to the designer. For example, a 16-bit variable representing a normalized sine
wave will only ever assume values in the interval (-1, 1). To cover this entire interval
with greatest precision, a designer would allocate all but two bits to the fractional part,
leaving one sign bit and one integer bit. This variable’s format is 1s1.14, which can
represent values in the interval [-3, 2] with precision 1/16384.

Creating Fixed-Point Applications
Fixed-point applications are often created from a well-tested floating-point
implementation, rather than written from scratch. The process of converting a floating-
point application to fixed-point is a non-trivial effort, with many issues to consider. In
most cases, the floating-point program is instrumented with code that tracks the
precision and range of the variables as it is run with sample data that simulate real-world
inputs. The precision and range data obtained in this simulation step are used to
determine the variables’ fixed-point formats.

As a designer, you must convert each variable initially to a fixed-point format and keep
track of that format as the variable is operated on. Each arithmetic operation has the
potential to disrupt the tidy packaging of your variables. To begin with, adding or
subtracting fixed-point numbers A and B requires that the decimal points be aligned—
that is, FA = FB. Aligning the decimal points is usually accomplished by right-shifting one
of the operands, which discards precision.

More troublesome is the possibility of overflow. Add a pair of 1s2.5 numbers and it’s
possible that the result will require three integer bits (e.g., 01100000 + 01000000 =
10100000), an incorrect result when interpreted in the 1s2.5 format. What to do? You

Application Note IATAPP-106 Updated 6/1/2005

Fixed-Point Arithmetic in Impulse C, 3

can choose either to prevent overflow or to use saturation to put a ceiling (or floor) on a
calculation. In the case of addition, overflow is prevented by shifting the decimal point of
the operands to the right one bit before adding them, but you’ll lose one digit of precision
in the process.

Preventing overflow with the other basic arithmetic operations also affects the precision
and range of their results. Multiplication can easily overflow, since the result can require
almost twice as many bits as the operands have. The result must be right-shifted back
into the desired format; if the multiplier hardware does not support double-precision
intermediate results, you may lose integer bits. Again, scaling down the operands can
prevent overflow but costs precision. Fixed-point division chops off least-significant bits
in the result, but pre-scaling the operands (left-shifting this time) can preserve precision
and prevent underflow, at the cost of reduced integer range in the operands.

Some CPUs and many DSPs provide hardware support for fixed-point arithmetic. To
help prevent loss of integer range in multiplication, for example, a CPU might offer a
double-precision intermediate result. If your hardware supports it, you can use
saturation, which instructs operations to return the maximum (or minimum) value for a
datatype when overflow occurs. To mitigate the loss of precision associated with
negatively scaling variables (shifting them right), you can use rounding modes supported
by your hardware to carry information from the lost bits back into the scaled number.

It’s important to remember that you, the programmer, must keep track of where the
decimal point is throughout a fixed-point calculation in order to make sense of the results.
It’s unlikely that a single fixed-point format will be used for every variable in a calculation,
so fixed-point programs will be full of scaling operations to align decimal points, prevent
overflow, and manage precision. The decision to scale variables depends on the actual
values the variables are expected to take on, so it’s important to be able to characterize
the range and precision of input, intermediate, and output variables throughout a fixed-
point program. Converting floating-point applications to fixed-point is an inherently time-
consuming process that is beyond the scope of this document to describe in full, but
several techniques are detailed in papers and manuals easily found by an Internet
search (see Further Reading, below).

Impulse C Fixed-Point Macros
Impulse C provides support for fixed-point arithmetic in the form of macros and
datatypes that allow you to express fixed-point operations in ANSI C and perform
computations either as software on an embedded CPU or as hardware modules running
in an FPGA’s logic.

Impulse C currently supports three fixed-point bit widths (8, 16, and 32 bits) through a
combination of datatypes and arithmetic macros. The co_int8, co_int16, and co_int32
datatypes are provided for signed fixed-point numbers, while co_uint8, co_uint16, and
co_uint32 are for unsigned fixed-point numbers. When used with the appropriate class
of macros, operands of a given type will be translated by the CoBuilder hardware
compiler into a datapath of the same bit width, with two exceptions: for division and
multiplication operations, CoBuilder will generate intermediate datapaths twice the size
of their operands.

Application Note IATAPP-106 Updated 6/1/2005

Fixed-Point Arithmetic in Impulse C, 4

The Impulse C fixed-point macros are defined in the C header file co_math.h. Each
macro takes two or three arguments: one or two operands of the same fixed-point format
(a and b) and one constant integer (DW) whose value is the fractional bit width Fabc of the
operands and the result. The programmer is responsible for pre-scaling the operands
appropriately to prevent overflow or underflow. Macros for formatting fixed-point
numbers, converting fixed-point values to floating-point, and performing fixed-point
arithmetic are described in the following sections.

Formatting
To convert an integer value to a fixed-point format, use the FXCONST8, FXCONST16, or
FXCONST32 macros. The result is an unsigned integer (co_uint8, co_uint16, or co_uint32,
respectively) with the given fractional bit width; you may cast the result to obtain the
desired bit width and sign.

For example:

co_int16 a = (co_int16) FXCONST16(96, 7);
// 96 in 1s8.7 format == 0x3000

Converting Fixed-point to Floating-point
To convert a fixed-point number to floating-point, use the FX2REAL32 macro. The result is
a single-precision floating-point number (float) equal in value to the fixed-point number.

For example:

IF_SIM(
co_int32 a = 0x000000F4; // 15.25 in 1s11.4
float f = FX2REAL32(a, 4);
printf(“int: 0x%x, float: %f\n”);
// prints “int: 0xF4, float: 15.250000”
)

The FX2REAL32 macro is useful for debugging fixed-point values as they pass through a
computation. Note that since floating-point numbers are not supported in hardware
processes, this macro will only compile in simulation and in software processes targeting
processors with floating-point hardware.

Addition/Subtraction
The Impulse C macros FXADD8, FXADD16, and FXADD32 implement fixed-point addition.

For example:

co_int16 a, b, c;
a = 0xFF00; // -1.0 in 1s7.8
b = 0x0180; // 1.5 in 1s7.8
c = FXADD16(a, b, 8); // 0x0080 == 0.5 in 1s7.8

co_uint8 x, y, z;
x = 0xFD; // 63.25 in 0s6.2
y = 0x02; // 0.5 in 0s6.2
z = FXADD8(x, y, 2); // 0xFF == 63.75 in 0s6.2

Application Note IATAPP-106 Updated 6/1/2005

Fixed-Point Arithmetic in Impulse C, 5

Multiplication
The Impulse C macros FXMUL8, FXMUL16, and FXMUL32 implement fixed-point multiplication,
rounding the result to the nearest representable number. The macros use a double-
precision intermediate datapath and return the low-order half of the result; if 64-bit
integers are not supported on your target software platform, then multiplication of 32-bit
fixed-width numbers will also not be supported in software.

For example:

co_int32 a, b, c;
a = 0x00002000; // 32.0 in 1s23.8
b = 0x80000080; // -0.5 in 1s23.8
c = FXMUL32(a, b, 8); // 0x80001000 == -16.0 in 1s23.8

Division
The Impulse C macros FXDIV8, FXDIV16, and FXDIV32 implement fixed-point division,
rounding the result to the nearest representable number. The macros use a double-
precision intermediate datapath and return the low-order half of the result; if 64-bit
integers are not supported on your target software platform, then division of 32-bit fixed-
width numbers will also not be supported in software.

For example:

co_int16 a, b, c;
a = 0x1000; // 4.0 in 1s5.10
b = 0x0100; // 0.25 in 1s5.10
c = FXDIV16(a, b, 10); // 0x4000 == 16.0 in 1s5.10

Further Reading
For more information on fixed-point arithmetic and floating-to-fixed-point conversion:
- “Fixed-point math in C”

(www.embedded.com/showArticle.jhtml?articleID=15201575)
- “An Introduction to Fixed Point Math”

(www.bookofhook.com/Article/GameDevelopment/AnIntroductiontoFixedPoin.html)
- “Performance improvement using Fixed-Point arithmetic”

(www.einfochips.com/download/tip_march04.htm)
- “Fixed-Point Literature”

 (www.ert.rwth-aachen.de/Projekte/Tools/FRIDGE/FixedPointLiterature.html)

